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Abstract

Introduction The aim of the study was to perform digital RNA counting to validate a gene expression signature for oper-
able breast cancers initially treated with curative intention, and the risk of recurrence, distant metastasis, and mortality was
predicted.

Methods Candidate genes were initially discovered from the coherent genomic and transcriptional alternations from microar-
rays, and the extended concurrent genes were used to build a risk stratification model from archived formalin-fixed paraffin-
embedded (FFPE) tissues with the NanoString nCounter.

Results The extended concurrent genes signature was prognostic in 144 Taiwanese breast cancers (5-year relapse-free sur-
vival: 89.8 and 69.4% for low- and high-risk group, log-rank test: P=0.004). Cross-platform comparability was evidenced
from significant and positive correlations for most genes as well as equal covariance matrix across 64 patients assayed for
both microarray and digital RNA counting.

Discussion Archived FFPE samples could be successfully assayed by the NanoString nCounter. The purposed signature
was prognostic stratifying breast cancer patients into groups with distinct survival patterns, and clinical applicability of the
residual risk model was proved.
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Introduction

Breast cancer is the most common female malignancy in Tai-
wan and treatment outcomes have improved enormously with
early detection and advancements in adjuvant therapy [1, 2].
Unfortunately, a subset of early stage breast cancer still suf-
fers from recurrence, metastasis, or even cancer-specific death
despite treatment improvement, and conventional pathological
factors fail to provide sufficient explanatory power accounting
for the observed prognostic discrepancy.

In the past decade, we had conducted high-throughput
microarray experiments at genomic and transcriptional levels
to detect copy number variation (CNV) as well as gene expres-
sion (GE) profiles. Our projects focused on several aspects
of sporadic breast cancers in Taiwan, including concurrent
analyses of comparative genomic hybridization (CGH) and GE
microarray data, bioinformatics algorithm for microarray clas-
sification, and trans-ethnic application of molecular taxonomy
[3-6]. Based on the coherent genes across chromosomal and
transcriptional alterations, the 32-gene extended concurrent
genes signature was purposed as being prognostic among 1145
breast cancer microarray experiments, including discovery
cohort of 83 Taiwanese breast cancers for concurrent genes,
and 327 Taiwanese and 735 Western sporadic breast cancers
for independent leading edge analyses [7].

One drawback of microarray-based multi-gene signature is
the prerequisite of fresh cancerous tissue, which may impede
wide clinical application. Second, when additional samples
are recruited and incorporated into the existing cohort, there
remains a risk of re-classification of predicted group as both
normalization and classification algorithm are inevitably influ-
enced by the new comer [8, 9]. Third, after determining the
identity of constitutional genes, an updated and more efficient
gene expression assessment assay with modern technology
should be adopted, to replace the hypothesis-driven and obso-
lete oligonucleotide microarray [10].

The aim of the project was to take advantage of digital
RNA counting for gene expression signature synthesis and
to develop a predictive model for operable breast cancers ini-
tially treated with curative intention, and the risk of recurrence,
distant metastasis, as well as mortality was speculated. The
validity of transition from microarray to digital RNA counting
was ascertained from samples assayed for both platforms as
well as independent breast cancer samples.

Materials and methods
Extended concurrent genes signature

The discovery of concurrent genes and synthesis of the
extended concurrent genes signature had been published
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elsewhere and a brief summative description was given
here [3, 7]. There were 1584 concurrent genes from 29
Taiwanese breast cancers assayed for both CGH and GE
microarrays, and enriched concurrent gene sets for disease-
free survival were identified independently from our 83
GE arrays (GSE48391) and one study with Han Chinese
origin (GSE20685) and three series of Western countries
(GSE7390, GSE2034 and GSE3494) [11-15]. Constitutional
genes were selected from leading edge analysis across all
enrolled experiments, while supervised partial least square
(PLS) regression was used to derived predictive model for
relapse-free survival [5, 6]. Prognostic discrepancy was
observed between high-risk and low-risk patients predicted
with the extended concurrent genes signature [7] (data not
shown, manuscript in submission).

Breast cancer samples recruitment

Eligible patients were recruited after consulting cancer reg-
istry to identify those diagnosed and operated between 2010
and 2014 with curative intension. The design, purpose was
explained to all participants by investigators (CCH and CSH)
and written informed consent was pursued before sample
collection. As cross-platform comparability was one major
interest of current study, breast cancers previously assayed
with oligonucleotide microarray with adequate archived sur-
gical pathology were prioritized.

Demographic and clinical features were obtained from
cancer registry. Estrogen receptor (ER) and progesterone
receptor (PR)-positive status was determined with the pres-
ence of at least 10% of nuclei with positive immunohisto-
chemistry (IHC) staining, and breast samples displaying low
ER positivity (1-9% of nuclei with positive stains) were not
considered as in previous discovery study [3]. Human epi-
dermal growth factor receptor II (HER2) status was deter-
mined following the ASCO and CAP guidelines [16]. Those
with THC 3+ and ITHC 2+ with fluorescence in situ (FISH)
hybridization amplification were categorized into HER2
over-expression. For sample size estimation, we planned to
enroll 30 cases per year with a total of 120 and around 30 of
them were relapsing/metastatic breast cancers.

Nucleic acid extraction

RNA abundance in formalin-fixed, paraffin-embedded
(FFPE) tumor tissue was measured. Archived pathologi-
cal slides or tissue blocks were retrieved from department
of pathology. FFPE sections and accompanied hematoxy-
lin and eosin (H&E) stained slides were reviewed by one
certified pathologist (CYL) to select areas that contained
at least 70% tumor cells for RNA extraction. When only
pathological slide was available, the target tissue must
cover 30% of the surface area and the excess paraffin was
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removed using a scalpel prior to extraction. Paraffin was
removed from specimens by xylene extraction then by
ethanol washes.

Total RNA was isolated and purified from each
10-pm-thick roll using the RNeasy FFPE Kit (Qiagen,
Hilden, Germany) as per manufacturer’s instructions with
modifications. Standard de-crosslinking and column puri-
fication steps were performed to remove proteins and other
cellular components prior to RNA elution in water. The
quantity and quality of extracted RNA were determined
by the NanoDrop spectrophotometers (Thermo Fisher
Scientific, MA, USA) using a wavelength spectrum of
220-320 nm, evaluating the 260/280 ratio, and by separation
on an Agilent BioAnalyzer (Agilent, Santa Clara, CA). RNA
input was scaled based on DV 300 value to 150 ng (150 ng/
DV300x 100) and proceeded according to the nCounter
MAX assay user manual. For quality control, a minimum
DV 300 of 20 was required.

Digital RNA counting

Gene expression levels were measured in total RNA iso-
lated from FFPE tissues using the NanoString nCounter
(NanoString Technologies Inc., Seattle, WA). The underly-
ing chemistry included target-specific reporter and capture
probes, and the collective CodeSet hybridized to regions
of interest with covalently attached and target-specific
sequences.

Normalization of raw transcript counts was performed
by dividing the geometric mean of six housekeeper-control
genes: ACTB, G6PD, RPLPO, TBP, TFRC and UBB. Follow-
ing positive control normalization, housekeeper-normalized
transcript counts were log2 transformed and data were row
z-score standardized before further analysis. Prediction
analysis of microarray 50 (PAMS50) analysis was performed
using the published quantitative real-time PCR (qQRT-PCR)
centroids on the normalized log2 gene expression data before
z-standardization [17]. nSolver version 4.0 (NanoString
Technologies Inc., Seattle, WA) was used for data import,
quality control, and outputted normalized expression values.
Normalization steps included (1) reducing technical varia-
tion by adjusting each sample’s counts based on its relative
value to the geometric mean of all samples; (2) correcting
background count levels by subtracting from each sample’s
count the mean plus two standard deviations of counts from
negatives controls; and (3) normalizing for sample RNA
content using the geometric mean of expression levels from
the six reference genes [18, 19]. Downstream analyses were
carried out by BRB Array-Tools version 4.6.1 (National
Cancer Institute, Bethesda, MD) for visualization purpose
and SAS (SAS Institute Inc., Cary, NC) version 9.4 for risk
group classification and survival analyses [20].

Cross-platform comparability and measurement
invariance

Breast cancer samples assayed for both the Affymetrix
GeneChip Human Genome U133 Plus 2.0 microarray
(Thermo Fisher Scientific, MA, USA) and the custom-
ized NanoString nCounter BCeC Sig CodeSet provided
the source for testing cross-platform comparability and
measurement invariance. Concordance of gene expression
measured between oligonucleotide microarray, which was
adopted during the development of the purposed signature,
and digital RNA counting, which deployed the CodeSet,
was evaluated with the Spearman’s correlation coefficient
statistics. Gene expression values measured by digital
RNA counting were also predicted by corresponding genes
measured by microarray through a linear regression model
with a prior z-transformation within each platform.

Multi-group structural equational modeling (SEM)
was conducted to appraise the equality of two covariance
matrices for measurement invariance [21, 22]. The covari-
ance matrices of two independent groups were tested for
equality as they were constrained to be the same under the
null hypothesis. The null hypothesis was:

where Y, and ), were the population covariance matri-
ces of the two independent groups (gene expression profiles
measured independently by microarray and digital RNA
counting in current study). Lagrange multiplier (LM) sta-
tistics were calculated for releasing variances/covariances
constraints. LM statistics estimated the reduction of model
fit Chi-square statistic if the constraint put on the corre-
sponding parameter was released; only P-value <0.001 was
considered for multiple testing correction.

Prognostic signature

Gene expression classification with PLS regression had
been described elsewhere, which was essentially the linear
transformation of high-dimensional gene expression data
into quite a few orthogonal latent factors [5]. PLS was
used for dimension reduction and the first latent X-fac-
tor (also known as gene component) was constructed for
the constitutional genes. PLS regression maximized the
covariance between the predictors (signature genes) and
the responder (dichotomous high-/low-risk group). Miss-
ing values in gene expression were imputed with expec-
tation—maximization algorithm [23]. Leave-one-out cross
validation was performed to prevent model over-fitting.
The threshold for high-/low-risk group was determined
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from the 75th percentile of the first extracted latent factor
(X-score) considering the average relapse rate among all
breast cancer subtypes. The predictors and the response
variable were centered and scaled to have mean zero and
standard deviation one.

Results
Targeted gene expression

A custom-designed NanoString nCounter gene expression
CodeSet, BCeC Sig, was established, for which transcrip-
tional profiles of targeted genes were evaluated with digi-
tal RNA counting. Signature genes included 32 genes of
the extended concurrent genes signature (Supplementary
Table 1 for details of CodeSet design regarding interrogated
genes). All samples with expression data passing quality
control were included for downstream analyses. To classify
intrinsic molecular subtype, we applied a centroid-based
clustering algorithm based on the single sample prediction
(SSP) classification developed by Parker et al. known as
PAMSO0 [17].

Table 1 Clinical characteristics of 144 Taiwanese breast cancers

Assayed Taiwanese breast cancers

RNA was extracted successfully from FFPE samples with
low failure rates of nucleic acids degradation, and digital
RNA counting experiments were performed with the cus-
tomized BCeC Sig CodeSet running on the NanoString
nCounter. A total of 144 Taiwanese breast cancers were suc-
cessfully assayed. Table 1 details clinical characteristics. To
further evaluate the cross-platform comparability, we tried to
enroll breast cancers (n=64) who had also been assayed for
the Affymetrix microarrays. Supplementary Table 2 shows
individual clinical features of each enrolled subject.

Cross-platform comparability

To understand the comparability in mRNA abundance
between the measurement conducted by Affymetrix oligonu-
cleotide microarray and NanoString nCounter-based digital
RNA counting, 64 breast samples assayed for both platforms
were retrieved and compared. Concordance between both
platforms was evaluated within the same subject, and Table 2
showed Spearman’s correlation coefficients of each element
constituting the extended concurrent genes signature. Most
genes showed a significant and positive correlation, except

IHC subtype P-value
HR+/HER2+ HR+/HER2—- HR—-/HER2+ HR—-/HER2- Missing
Relapse-free survival event
Disease-free 22 66 21 9 4 0.77
Relapse 4 11 3 2
Total 26 77 24 11
All-cause mortality event
Death 20 65 19 4 6 <0.01
Alive 6 12 5 7 0
Total 26 77 24 11 6
PAMS50 SSP
Basal 4 7 8 7 2 <.0001
HER2 13 4 12 4 1
Lum-A 5 38 3 0 2
Lum-B 4 28 0 1
Total 26 77 24 11 6
Follow-up time (year)
N 26 71 24 11 6 0.49
Mean 35 3.7 34 2.6 32
SD 2.5 2.3 22 1.8 42
Minimum 0.3 0.3 0.7 0.2 0.8
Maximum 9.4 74 6.8 54 11.6

IHC immunohistochemistry, HR hormone receptor, HER2 human epidermal growth factor receptor II, PAM50 SSP Prediction Analysis of

Microarray 50 single sample predictor
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Table2 Spearman’s correlation coefficients between mRNA abun-
dance measured by oligonucleotide microarray and digital RNA
counting

Table 3 Transcriptional abundance measured by digital RNA count-
ing regressed on gene expression values measured by oligonucleotide
microarray

Symbol Spearman’s correlation coef- ~ P-value Symbol Intercept Regression P-value
ficient coefficient

ASPM 0.72 <.0001 ASPM —1.21E-15 0.69 3.31E-10
ATP9A 0.67 <.0001 ATP9A —2.74E-16 0.74 2.56E-12
AURKA 0.66 <.0001 AURKA 6.79E-17 0.62 5.14E-08
CDC20 0.76 <.0001 CDC20 3.88E-16 0.75 7.28E-13
CENPF 0.71 <.0001 CENPF 7.67E-16 0.71 6.29E-11
CSEIL 0.56 <.0001 CSEIL —7.42E-15 0.53 8.42E-06
DENND2D 0.56 <.0001 DENND2D —2.85E-15 0.51 1.9079E-05
EDN?2 0.70 <.0001 EDN?2 —9.27E-16 0.67 9.71E-10
EIF4EBPI 0.72 <.0001 EIF4EBPI —1.46E-15 0.79 1.06E-14
FBXO05 0.54 <.0001 FBXO05 3.06E-16 0.53 7.36E-06
GINS1 0.80 <.0001 GINS1 6.45E-16 0.75 1.02E-12
GRB7 0.64 <.0001 GRB7 —1.02E-16 0.77 1.42E-13
HLA-DOB 0.52 <.0001 HLA-DOB 8.24E-16 0.50 2.2438E-05
IDH3A 0.26 0.04 IDH3A 1.44E-15 0.38 0.00199207
IKZF1 0.56 <.0001 IKZF1 7.24E-16 0.60 1.42E-07
KIF14 0.75 <.0001 KIF14 1.07E-15 0.72 231E-11
KIF2C 0.74 <.0001 KIF2C —1.87E-15 0.74 2.31E-12
LACTB2 0.57 <.0001 LACTB2 1.32E-15 0.60 1.32E-07
MRPS?2 0.13 0.3231 MRPS?2 1.06E-15 0.11 0.39764837
OSBPL2 0.06 0.6535 OSBPL2 4.04E-15 0.02 0.90384917
PNRCI -0.11 0.3794 PNRCI 1.89E-15 -0.12 0.33731995
PPARD -0.03 0.8429 PPARD —2.96E-15 -0.14 0.25738522
PPFIAI 0.07 0.5614 PPFIAI 3.23E-15 0.05 0.68818773
PTK6 0.54 <.0001 PTK6 2.20E-15 0.61 1.10E-07
RECQLA 0.60 <.0001 RECQLA —1.39E-15 0.58 6.70E-07
S100PBP 0.24 0.0518 S100PBP —6.89E-16 0.34 0.00644616
SERPINB3 0.13 0.4115 SERPINB3 3.69E-16 0.13 0.29052746
SLCI6A3 0.37 0.0025 SLCI6A3 5.27E-15 0.47 9.6126E-05
SLC25A1 0.60 <.0001 SLC25A1 3.08E-15 0.63 3.04E-08
STARD3 0.65 <.0001 STARD3 —1.26E-15 0.85 3.58E-19
UBE2C 0.56 <.0001 UBE2C 3.24E-15 0.58 5.05E-07
UBE2V2 0.53 <.0001 UBE2V2 1.50E-17 0.59 2.79E-07

for MRPS2, OSBPL2, PNRC1, PPARD, PPFIAI, SI00PBP,
and SERPINB3.

If mRNA measured by nCounter was treated as the
response variable (Y) and was predicted by a linear func-
tion of the regressors (X), which were mRNA transcrip-
tions measured by microarray, the intercept and slope (coef-
ficient) estimated are detailed in Table 3 with each signature
gene centered and scaled to have mean zero and standard
deviation one within each platform. Except for PNRCI and
PPARD (negative slopes) and MRPS2, OSBPL2, PPFIAI
and SERPINB3 (insignificant regression coefficients), most
investigated genes showed a concordant trend. Normalized
(not standardized) gene expression data of both gene expres-
sion assays were provided in Supplementary Tables 2 and 3.

Measurement invariance

To further evaluate the measurement models of distinct gene
expression assays as well as the trans-platform comparabil-
ity, we took advantage of multi-group SEM to test equality
of two covariance matrices using a multiple-group analysis.
Initially we tested if these two groups had the same covari-
ance matrix, and the covariance matrix itself was uncon-
strained as the default setting of all non-redundant elements
in the covariance matrix being free parameters. The model
fit indices showed a Chi-square value of 747.0458 (df=528)
and a P-value <0.0001 [Root mean square error of approxi-
mation (RMSEA): 0.0811], which rejected the null hypoth-
esis of equality of the covariance matrices.
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LM statistics were consulted to release variances/
covariances constraints. Covariance between UBE2C and
KIF2C (P=0.0003, LM statistic: 13.00361) and variance of
RECQILA4 (P=0.0007, LM statistic: 11.36518) and UBE2V2
(P=0.0058, LM statistic: 7.61829). Serial modifications and
model fit indices showed much improvement toward equal
covariance (data not shown).

We also trained the model from 144 breast cancers under-
going digital RNA counting. Supplementary Fig. 1 showed
the conceptual structure of extended concurrent genes
signature.

Survival analysis

Predictor (signature gene) weights and loadings are detailed
in Supplementary Table 4. The threshold was set to the 75th
percentile of the first X-score (1.9459). During the up to
11.6 years of follow-up (median follow-up time: 5.5 year
for low-risk group and 4.6 for high-risk group), there were
11 events (local recurrence, distant metastasis, or breast
cancer-specific death) in each group, resulting in relapse-
free survival rate of 89.8 and 69.4% for low- and high-risk
group respectively (log-rank test: P=0.004). For all-cause
mortality, there were 17 and 13 fatal events for the low-
and high-risk group, and the overall survival rate was 91
and 23% respectively (log-rank test: P=0.0294). Figures 1
and 2 show relapse-free and overall survival of Taiwanese
breast cancers stratified by the extended concurrent genes
signature assayed by digital RNA counting (Supplementary
Figs. 2 and 3 show the same plots stratified by the PAMS50

Fig. 1 Relapse-free survival
between the high- (riskgp=1)

subtypes). Clustering heatmaps are displayed in Fig. 3 and
Supplementary Fig. 4 (samples ordered by relapse-free sta-
tus). There was no interaction between predicted risk group
and THC subtype (Table 1). After multi-variate analysis
adjusted for clinical hormone receptor and HER? status, the
predicted risk group remained significant with hazard ratios
of 4.1 and 2.4 reported for relapse-free survival and overall
survival (P<0.01 and P=0.02, respectively).

Discussion

In current study, the prognostic performance of the
extended concurrent genes signature, initially developed
from oligonucleotide microarrays, was ascertained from
the NanoString nCounter-based digital RNA counting gene
expression panel. The cross-platform comparability was evi-
denced from 64 Taiwanese breast cancers assayed for both
platforms, and prognostic relevance was observed among
144 patients showing distinct survival patterns stratified by
the predicted risk groups.

Nowadays adjuvant therapies following curative surgery
for early breast cancer are determined from predictive (some
are also prognostic) factors such as IHC assays for ER, PR,
HER?2, Ki-67 as well as morphology of nuclear grade [24].
Despite enormous advancement in hormone manipulation,
cytotoxic chemo-, and targeted therapy, there remains a sub-
stantial proportion of early breast cancers who still suffer
from local recurrence, distant metastasis, or breast cancer
associated death following curative surgery [25]. On the

Product-Limit Survival Estimates
With Number of Subjects at Risk

and low-risk (riskgp=0) group
defined by the extended concur-
rent genes signature (log-rank

test: 0.004, riskgp: risk group) 08

0.6 |

0.4 -

Survival Probability

0.2+
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other hand, these conventional pathology-based factors fail
to provide complete explanation for the observed prognos-
tic discrepancy within each subtype such as one-fourth of
HER2 over-expressed breast cancers eventually develop
resistance to trastuzumab, a humanized monoclonal anti-
HER?2 antibody [26]. Therefore, accurate risk assessment
becomes a must for effective surveillance for breast cancer
survivors and risk management.

In the past decade, microarray analyses have redefined
breast cancer as a union of distinct molecular subtypes and
a couple of molecular taxonomies have been established,
with most displaying prognostic and some with predictive
power from retrospective cohort or randomized controlled
trials [17, 27-31]. Most microarray-based or RT-PCR-
based multi-gene expression biomarkers published so far
are restricted to ER-positive and limited nodal involvement
(NO/1) subpopulation, which may limit clinical applicabil-
ity [32, 33].

Our published concurrent genes and the updated extended
concurrent genes signatures are molecular biomarkers which
capture the genetic aberrations inherited in breast cancer
pathogenesis. Concurrent genes are those with coherent
patterns between genomic and transcriptional alternations
through integrating analyses [3, 7]. The discovery cohort
included 31 CGH and 83 GE microarrays, of which 29 breast
cancers were assayed for both platforms. In addition, targets
were also determined by Genomic Identification of Signifi-
cant Targets in Cancer (GISTIC) from CGH microarrays
[34]. A total of 1584 concurrent genes and genes with signif-
icant GISTIC scores were used to derive signatures, which

Overall survival

riskgp —————— 0

were enriched concurrent gene sets across 83 GE arrays and
one series with Han Chinese origin as well as three studies
of Western origin [11-15]. Consensus from leading edge
analysis was followed by supervised PLS regression predic-
tive model for relapse-free survival and prognostic discrep-
ancy was observed between predicted high-risk and low-risk
group patients [7].

Regarding the published multi-gene signature for breast
cancer prognosis, there are microarray-based such as the
70-gene MammaPrint (Agendia, Morgan Irvine, CA), RT-
PCR-based 21-gene Oncotype DX (Genomic Health, Red-
wood City, CA) and 12-gene EndoPredict (Myriad Genet-
ics, Salt Lake City, UT), and NanoString nCounter-based
50-gene Prosigna (Veracyte, South San Francisco, CA)
[27-31, 35]. While most multi-gene signatures have used
microarrays for candidate gene discovery during develop-
ment, the final version usually adopt more efficient RT-
PCR or digital RNA counting for gene expression measure.
Therefore, cross-platform comparability should be critically
evaluated to enhance prognostic validity.

Digital RNA counting was determined for the deploy-
ment of the extended concurrent genes signature as easily
degraded nucleic acid from archived FFPE samples could
be handled by the NanoString nCounter [18, 19]. Although
nowadays it is not novel to perform gene expression profil-
ing from FFPE samples with the nCounter system, it was
expected that nucleic acid degradation became a major issue
in current study as RNA was extracted from breast cancers
operated between 2010 and 2014. Consequently, it is neces-
sary to select a subset of study samples whose fresh frozen

@ Springer



482

Breast Cancer Research and Treatment (2021) 186:475-485

;% Pﬁ?ﬁ%“ﬁ_ﬁrﬂn% mm’ﬁmmﬂ

i

il n I I I =
—‘ 0 PPARD
OSBPL2
ATPOA

PNRCL

IK2E1

I . S100PBP 2.0
H DENND2D
1.6
| MRFS?
SERPINE3 1.2
EDN2
-0.8
UBE2Y2
I LACTE2 - 0.4
CSEIL
-0.0
IDH3A
sLcsAl - .04
PPFIAL
-0.8
UREXC
AURKA 12
KIFl4
-1.6
CENPF
KiFaC 20
e
GINS1
KECQLY
FBXOS
EIF4ERPL
STARD3
GRE?
-
=t

Fig.3 Two-way hierarchical clustering heatmap of the extended con-
current genes and breast cancers. Average linkage and one-correlation
matric were used for distance calculation. X-axis list breast cancer

tissues had been assayed for gene expression with microar-
ray and to check whether the expression patterns of signa-
ture genes were similar between microarray and nCounter.
Molecular barcodes provide a digital detection capable of
highly multiplexed analyses. Fresh frozen tissues are needed
for most microarray hybridization, while snapped-frozen
samples are limited in real-world scenarios. Archived patho-
logical specimens provide a precious source to validate the
residual risk prediction model for breast cancers managed
with multi-modalities including surgery, chemo-, endocrine,
and targeted therapy.

Initially mRNA measurement concordance between oli-
gonucleotide microarray and digital RNA counting was eval-
uated from 64 breast cancers assayed for both platforms and
most (25 out of 32) signature genes showed a positive and
significant correlation coefficient. When nCounter measured
mRNA abundance was predicted from the one measured by
microarray, most (26 out of 32) signature genes also showed
a significant and positive regression coefficient. Since gene
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sample names and purple block indicated disease-free and brown
block indicated relapse cases

expression values were standardized within each platform
before regression, all intercept estimates were nearly zero.

In addition to numeric correlation of each constitutional
gene, we also took advantage of multi-group SEM to test
equality of two covariance matrices. When a theoretical
model, in our case the extended concurrent genes signature,
was justified as a good approximation to the transcriptional
profiles measured with a specific instrument such as the oli-
gonucleotide microarray, the next step was to ask whether
the same construct held true across heterogeneous groups
differed in assessing methods. It deserved notice that mean
structure analysis was not deciphered as data were stand-
ardized (z-transformed) within each gene expression assay
independently.

Although the significant P-value (P < 0.0001) rejected
the null hypothesis of common covariance matrix among
the two independent assays, the Chi-square test itself
might not be meaningful here. This value was calculated
from Chi-square value and model degrees of freedom,
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and the null hypothesis was that the predicted model fit-
ted the observed data well. However, Chi-square test is
very sensitive to sample size and the larger the sample
size, the greater the chance to get a significant Chi-square
test. Some even recommend using the Chi-square divided
by the degrees of freedom Xz/df less than 5 as a practi-
cal alternative index [36]. Our modest sample size of 144
might render the Chi-square test for model fitness unreli-
able. On the other hand, 0.0811 of RMSEA indicated a
slight deviation from good model fit, while LM statistics
suggested releasing equal covariance constraint on covari-
ance of UBE2C and KIF2C as well as equal variance con-
straints on RECQL4 and UBE2V2 between microarray
and digital RNA counting platform (all P-values <0.01).
Serial modifications with more general models might
result in enhanced comparability and much equal covari-
ance matrices of these two gene expression assays. At the
same time, distinct regression coefficients for each sig-
nature gene were also required for the novel digital RNA
counting assay, as well as recalibrated threshold for the
defined high-/low-risk group.

The extended concurrent genes signature, currently
transformed and conducted on a NanoString nCounter gene
expression panel, could facilitate our understanding of breast
cancer residual risk after curative surgery as prognostic
discrepancy was observed between the high- and low-risk
groups. Optimized performance on FFPE samples further
guaranteed wide clinical applicability. Digital detection of
individual targets was achieved through unique molecular
barcodes and reported probe counts representing precise
and accurate gene expression measurements. The custom-
ized BCeC Sig CodeSet was trained from 144 Taiwanese
breast cancers and prospective analysis of this retrospective
cohort showed prognostic power independent of clinical
subtypes such as ER and HER2 status. More efficient breast
cancer prognostic prediction through digital RNA counting
of signature genes selected form microarray experiments
is evidenced. As these patients were treated following the
contemporary guidelines with curative intention, the incre-
mental risk assessed may contribute substantially to the
understanding of survival discrepancy observed within each
clinical stratum.

There were some limitations of the study. First, both gene
expression assays were not performed simultaneously. Oli-
gonucleotide microarrays were conducted in a prospective
manner for fresh frozen samples, while nCounter assays
were performed for retrospectively retrieved pathological
archives. Second, the sample size of 144 breast cancers was
only modest and prospective study to evaluate the prognostic
power of the purposed signature is warranted in the future.

In conclusion, the proposed breast cancer residual risk
model, composed of the extended concurrent genes sig-
nature, was believed to provide clinical applicability and

substantial benefits for Taiwanese breast cancer patients in
terms of personalized medicine.
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