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Abstract
Introduction  The aim of the study was to perform digital RNA counting to validate a gene expression signature for oper-
able breast cancers initially treated with curative intention, and the risk of recurrence, distant metastasis, and mortality was 
predicted.
Methods  Candidate genes were initially discovered from the coherent genomic and transcriptional alternations from microar-
rays, and the extended concurrent genes were used to build a risk stratification model from archived formalin-fixed paraffin-
embedded (FFPE) tissues with the NanoString nCounter.
Results  The extended concurrent genes signature was prognostic in 144 Taiwanese breast cancers (5-year relapse-free sur-
vival: 89.8 and 69.4% for low- and high-risk group, log-rank test: P = 0.004). Cross-platform comparability was evidenced 
from significant and positive correlations for most genes as well as equal covariance matrix across 64 patients assayed for 
both microarray and digital RNA counting.
Discussion  Archived FFPE samples could be successfully assayed by the NanoString nCounter. The purposed signature 
was prognostic stratifying breast cancer patients into groups with distinct survival patterns, and clinical applicability of the 
residual risk model was proved.
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Introduction

Breast cancer is the most common female malignancy in Tai-
wan and treatment outcomes have improved enormously with 
early detection and advancements in adjuvant therapy [1, 2]. 
Unfortunately, a subset of early stage breast cancer still suf-
fers from recurrence, metastasis, or even cancer-specific death 
despite treatment improvement, and conventional pathological 
factors fail to provide sufficient explanatory power accounting 
for the observed prognostic discrepancy.

In the past decade, we had conducted high-throughput 
microarray experiments at genomic and transcriptional levels 
to detect copy number variation (CNV) as well as gene expres-
sion (GE) profiles. Our projects focused on several aspects 
of sporadic breast cancers in Taiwan, including concurrent 
analyses of comparative genomic hybridization (CGH) and GE 
microarray data, bioinformatics algorithm for microarray clas-
sification, and trans-ethnic application of molecular taxonomy 
[3–6]. Based on the coherent genes across chromosomal and 
transcriptional alterations, the 32-gene extended concurrent 
genes signature was purposed as being prognostic among 1145 
breast cancer microarray experiments, including discovery 
cohort of 83 Taiwanese breast cancers for concurrent genes, 
and 327 Taiwanese and 735 Western sporadic breast cancers 
for independent leading edge analyses [7].

One drawback of microarray-based multi-gene signature is 
the prerequisite of fresh cancerous tissue, which may impede 
wide clinical application. Second, when additional samples 
are recruited and incorporated into the existing cohort, there 
remains a risk of re-classification of predicted group as both 
normalization and classification algorithm are inevitably influ-
enced by the new comer [8, 9]. Third, after determining the 
identity of constitutional genes, an updated and more efficient 
gene expression assessment assay with modern technology 
should be adopted, to replace the hypothesis-driven and obso-
lete oligonucleotide microarray [10].

The aim of the project was to take advantage of digital 
RNA counting for gene expression signature synthesis and 
to develop a predictive model for operable breast cancers ini-
tially treated with curative intention, and the risk of recurrence, 
distant metastasis, as well as mortality was speculated. The 
validity of transition from microarray to digital RNA counting 
was ascertained from samples assayed for both platforms as 
well as independent breast cancer samples.

Materials and methods

Extended concurrent genes signature

The discovery of concurrent genes and synthesis of the 
extended concurrent genes signature had been published 

elsewhere and a brief summative description was given 
here [3, 7]. There were 1584 concurrent genes from 29 
Taiwanese breast cancers assayed for both CGH and GE 
microarrays, and enriched concurrent gene sets for disease-
free survival were identified independently from our 83 
GE arrays (GSE48391) and one study with Han Chinese 
origin (GSE20685) and three series of Western countries 
(GSE7390, GSE2034 and GSE3494) [11–15]. Constitutional 
genes were selected from leading edge analysis across all 
enrolled experiments, while supervised partial least square 
(PLS) regression was used to derived predictive model for 
relapse-free survival [5, 6]. Prognostic discrepancy was 
observed between high-risk and low-risk patients predicted 
with the extended concurrent genes signature [7] (data not 
shown, manuscript in submission).

Breast cancer samples recruitment

Eligible patients were recruited after consulting cancer reg-
istry to identify those diagnosed and operated between 2010 
and 2014 with curative intension. The design, purpose was 
explained to all participants by investigators (CCH and CSH) 
and written informed consent was pursued before sample 
collection. As cross-platform comparability was one major 
interest of current study, breast cancers previously assayed 
with oligonucleotide microarray with adequate archived sur-
gical pathology were prioritized.

Demographic and clinical features were obtained from 
cancer registry. Estrogen receptor (ER) and progesterone 
receptor (PR)-positive status was determined with the pres-
ence of at least 10% of nuclei with positive immunohisto-
chemistry (IHC) staining, and breast samples displaying low 
ER positivity (1–9% of nuclei with positive stains) were not 
considered as in previous discovery study [3]. Human epi-
dermal growth factor receptor II (HER2) status was deter-
mined following the ASCO and CAP guidelines [16]. Those 
with IHC 3+ and IHC 2+ with fluorescence in situ (FISH) 
hybridization amplification were categorized into HER2 
over-expression. For sample size estimation, we planned to 
enroll 30 cases per year with a total of 120 and around 30 of 
them were relapsing/metastatic breast cancers.

Nucleic acid extraction

RNA abundance in formalin-fixed, paraffin-embedded 
(FFPE) tumor tissue was measured. Archived pathologi-
cal slides or tissue blocks were retrieved from department 
of pathology. FFPE sections and accompanied hematoxy-
lin and eosin (H&E) stained slides were reviewed by one 
certified pathologist (CYL) to select areas that contained 
at least 70% tumor cells for RNA extraction. When only 
pathological slide was available, the target tissue must 
cover 30% of the surface area and the excess paraffin was 
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removed using a scalpel prior to extraction. Paraffin was 
removed from specimens by xylene extraction then by 
ethanol washes.

Total RNA was isolated and purified from each 
10-μm-thick roll using the RNeasy FFPE Kit (Qiagen, 
Hilden, Germany) as per manufacturer’s instructions with 
modifications. Standard de-crosslinking and column puri-
fication steps were performed to remove proteins and other 
cellular components prior to RNA elution in water. The 
quantity and quality of extracted RNA were determined 
by the NanoDrop spectrophotometers (Thermo Fisher 
Scientific, MA, USA) using a wavelength spectrum of 
220–320 nm, evaluating the 260/280 ratio, and by separation 
on an Agilent BioAnalyzer (Agilent, Santa Clara, CA). RNA 
input was scaled based on DV 300 value to 150 ng (150 ng/
DV300 × 100) and proceeded according to the nCounter 
MAX assay user manual. For quality control, a minimum 
DV 300 of 20 was required.

Digital RNA counting

Gene expression levels were measured in total RNA iso-
lated from FFPE tissues using the NanoString nCounter 
(NanoString Technologies Inc., Seattle, WA). The underly-
ing chemistry included target-specific reporter and capture 
probes, and the collective CodeSet hybridized to regions 
of interest with covalently attached and target-specific 
sequences.

Normalization of raw transcript counts was performed 
by dividing the geometric mean of six housekeeper-control 
genes: ACTB, G6PD, RPLP0, TBP, TFRC and UBB. Follow-
ing positive control normalization, housekeeper-normalized 
transcript counts were log2 transformed and data were row 
z-score standardized before further analysis. Prediction 
analysis of microarray 50 (PAM50) analysis was performed 
using the published quantitative real-time PCR (qRT-PCR) 
centroids on the normalized log2 gene expression data before 
z-standardization [17]. nSolver version 4.0 (NanoString 
Technologies Inc., Seattle, WA) was used for data import, 
quality control, and outputted normalized expression values. 
Normalization steps included (1) reducing technical varia-
tion by adjusting each sample’s counts based on its relative 
value to the geometric mean of all samples; (2) correcting 
background count levels by subtracting from each sample’s 
count the mean plus two standard deviations of counts from 
negatives controls; and (3) normalizing for sample RNA 
content using the geometric mean of expression levels from 
the six reference genes [18, 19]. Downstream analyses were 
carried out by BRB Array-Tools version 4.6.1 (National 
Cancer Institute, Bethesda, MD) for visualization purpose 
and SAS (SAS Institute Inc., Cary, NC) version 9.4 for risk 
group classification and survival analyses [20].

Cross‑platform comparability and measurement 
invariance

Breast cancer samples assayed for both the Affymetrix 
GeneChip Human Genome U133 Plus 2.0 microarray 
(Thermo Fisher Scientific, MA, USA) and the custom-
ized NanoString nCounter BCeC Sig CodeSet provided 
the source for testing cross-platform comparability and 
measurement invariance. Concordance of gene expression 
measured between oligonucleotide microarray, which was 
adopted during the development of the purposed signature, 
and digital RNA counting, which deployed the CodeSet, 
was evaluated with the Spearman’s correlation coefficient 
statistics. Gene expression values measured by digital 
RNA counting were also predicted by corresponding genes 
measured by microarray through a linear regression model 
with a prior z-transformation within each platform.

Multi-group structural equational modeling (SEM) 
was conducted to appraise the equality of two covariance 
matrices for measurement invariance [21, 22]. The covari-
ance matrices of two independent groups were tested for 
equality as they were constrained to be the same under the 
null hypothesis. The null hypothesis was:

where ∑1 and ∑2 were the population covariance matri-
ces of the two independent groups (gene expression profiles 
measured independently by microarray and digital RNA 
counting in current study). Lagrange multiplier (LM) sta-
tistics were calculated for releasing variances/covariances 
constraints. LM statistics estimated the reduction of model 
fit Chi-square statistic if the constraint put on the corre-
sponding parameter was released; only P-value < 0.001 was 
considered for multiple testing correction.

Prognostic signature

Gene expression classification with PLS regression had 
been described elsewhere, which was essentially the linear 
transformation of high-dimensional gene expression data 
into quite a few orthogonal latent factors [5]. PLS was 
used for dimension reduction and the first latent X-fac-
tor (also known as gene component) was constructed for 
the constitutional genes. PLS regression maximized the 
covariance between the predictors (signature genes) and 
the responder (dichotomous high-/low-risk group). Miss-
ing values in gene expression were imputed with expec-
tation–maximization algorithm [23]. Leave-one-out cross 
validation was performed to prevent model over-fitting. 
The threshold for high-/low-risk group was determined 
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from the 75th percentile of the first extracted latent factor 
(X-score) considering the average relapse rate among all 
breast cancer subtypes. The predictors and the response 
variable were centered and scaled to have mean zero and 
standard deviation one.

Results

Targeted gene expression

A custom-designed NanoString nCounter gene expression 
CodeSet, BCeC Sig, was established, for which transcrip-
tional profiles of targeted genes were evaluated with digi-
tal RNA counting. Signature genes included 32 genes of 
the extended concurrent genes signature (Supplementary 
Table 1 for details of CodeSet design regarding interrogated 
genes). All samples with expression data passing quality 
control were included for downstream analyses. To classify 
intrinsic molecular subtype, we applied a centroid-based 
clustering algorithm based on the single sample prediction 
(SSP) classification developed by Parker et al. known as 
PAM50 [17].

Assayed Taiwanese breast cancers

RNA was extracted successfully from FFPE samples with 
low failure rates of nucleic acids degradation, and digital 
RNA counting experiments were performed with the cus-
tomized BCeC Sig CodeSet running on the NanoString 
nCounter. A total of 144 Taiwanese breast cancers were suc-
cessfully assayed. Table 1 details clinical characteristics. To 
further evaluate the cross-platform comparability, we tried to 
enroll breast cancers (n = 64) who had also been assayed for 
the Affymetrix microarrays. Supplementary Table 2 shows 
individual clinical features of each enrolled subject.

Cross‑platform comparability

To understand the comparability in mRNA abundance 
between the measurement conducted by Affymetrix oligonu-
cleotide microarray and NanoString nCounter-based digital 
RNA counting, 64 breast samples assayed for both platforms 
were retrieved and compared. Concordance between both 
platforms was evaluated within the same subject, and Table 2 
showed Spearman’s correlation coefficients of each element 
constituting the extended concurrent genes signature. Most 
genes showed a significant and positive correlation, except 

Table 1   Clinical characteristics of 144 Taiwanese breast cancers

IHC immunohistochemistry, HR hormone receptor, HER2 human epidermal growth factor receptor II, PAM50 SSP Prediction Analysis of 
Microarray 50 single sample predictor

IHC subtype P-value

HR+/HER2+ HR+/HER2− HR−/HER2+ HR−/HER2− Missing

Relapse-free survival event
 Disease-free 22 66 21 9 4 0.77
 Relapse 4 11 3 2 2
 Total 26 77 24 11 6

All-cause mortality event
 Death 20 65 19 4 6  < 0.01
 Alive 6 12 5 7 0
 Total 26 77 24 11 6

PAM50 SSP
 Basal 4 7 8 7 2  < .0001
 HER2 13 4 12 4 1
 Lum-A 5 38 3 0 2
 Lum-B 4 28 1 0 1
 Total 26 77 24 11 6

Follow-up time (year)
 N 26 77 24 11 6 0.49
 Mean 3.5 3.7 3.4 2.6 3.2
 SD 2.5 2.3 2.2 1.8 4.2
 Minimum 0.3 0.3 0.7 0.2 0.8
 Maximum 9.4 7.4 6.8 5.4 11.6
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for MRPS2, OSBPL2, PNRC1, PPARD, PPFIA1, S100PBP, 
and SERPINB3.

If mRNA measured by nCounter was treated as the 
response variable (Y) and was predicted by a linear func-
tion of the regressors (Xs), which were mRNA transcrip-
tions measured by microarray, the intercept and slope (coef-
ficient) estimated are detailed in Table 3 with each signature 
gene centered and scaled to have mean zero and standard 
deviation one within each platform. Except for PNRC1 and 
PPARD (negative slopes) and MRPS2, OSBPL2, PPFIA1 
and SERPINB3 (insignificant regression coefficients), most 
investigated genes showed a concordant trend. Normalized 
(not standardized) gene expression data of both gene expres-
sion assays were provided in Supplementary Tables 2 and 3.

Measurement invariance

To further evaluate the measurement models of distinct gene 
expression assays as well as the trans-platform comparabil-
ity, we took advantage of multi-group SEM to test equality 
of two covariance matrices using a multiple-group analysis. 
Initially we tested if these two groups had the same covari-
ance matrix, and the covariance matrix itself was uncon-
strained as the default setting of all non-redundant elements 
in the covariance matrix being free parameters. The model 
fit indices showed a Chi-square value of 747.0458 (df = 528) 
and a P-value < 0.0001 [Root mean square error of approxi-
mation (RMSEA): 0.0811], which rejected the null hypoth-
esis of equality of the covariance matrices.

Table 2   Spearman’s correlation coefficients between mRNA abun-
dance measured by oligonucleotide microarray and digital RNA 
counting

Symbol Spearman’s correlation coef-
ficient

P-value

ASPM 0.72  < .0001
ATP9A 0.67  < .0001
AURKA 0.66  < .0001
CDC20 0.76  < .0001
CENPF 0.71  < .0001
CSE1L 0.56  < .0001
DENND2D 0.56  < .0001
EDN2 0.70  < .0001
EIF4EBP1 0.72  < .0001
FBXO5 0.54  < .0001
GINS1 0.80  < .0001
GRB7 0.64  < .0001
HLA-DOB 0.52  < .0001
IDH3A 0.26 0.04
IKZF1 0.56  < .0001
KIF14 0.75  < .0001
KIF2C 0.74  < .0001
LACTB2 0.57  < .0001
MRPS2 0.13 0.3231
OSBPL2 0.06 0.6535
PNRC1  − 0.11 0.3794
PPARD  − 0.03 0.8429
PPFIA1 0.07 0.5614
PTK6 0.54  < .0001
RECQL4 0.60  < .0001
S100PBP 0.24 0.0518
SERPINB3 0.13 0.4115
SLC16A3 0.37 0.0025
SLC25A1 0.60  < .0001
STARD3 0.65  < .0001
UBE2C 0.56  < .0001
UBE2V2 0.53  < .0001

Table 3   Transcriptional abundance measured by digital RNA count-
ing regressed on gene expression values measured by oligonucleotide 
microarray

Symbol Intercept Regression 
coefficient

P-value

ASPM  − 1.21E–15 0.69 3.31E–10
ATP9A  − 2.74E–16 0.74 2.56E–12
AURKA 6.79E–17 0.62 5.14E–08
CDC20 3.88E–16 0.75 7.28E–13
CENPF 7.67E–16 0.71 6.29E–11
CSE1L  − 7.42E–15 0.53 8.42E–06
DENND2D  − 2.85E–15 0.51 1.9079E–05
EDN2  − 9.27E–16 0.67 9.71E–10
EIF4EBP1  − 1.46E–15 0.79 1.06E–14
FBXO5 3.06E–16 0.53 7.36E–06
GINS1 6.45E–16 0.75 1.02E–12
GRB7  − 1.02E–16 0.77 1.42E–13
HLA-DOB 8.24E–16 0.50 2.2438E–05
IDH3A 1.44E–15 0.38 0.00199207
IKZF1 7.24E–16 0.60 1.42E–07
KIF14 1.07E–15 0.72 2.31E–11
KIF2C  − 1.87E–15 0.74 2.31E–12
LACTB2 1.32E–15 0.60 1.32E–07
MRPS2 1.06E–15 0.11 0.39764837
OSBPL2 4.04E–15 0.02 0.90384917
PNRC1 1.89E–15  − 0.12 0.33731995
PPARD  − 2.96E–15  − 0.14 0.25738522
PPFIA1 3.23E–15 0.05 0.68818773
PTK6 2.20E–15 0.61 1.10E–07
RECQL4  − 1.39E–15 0.58 6.70E–07
S100PBP  − 6.89E–16 0.34 0.00644616
SERPINB3 3.69E–16 0.13 0.29052746
SLC16A3 5.27E–15 0.47 9.6126E–05
SLC25A1 3.08E–15 0.63 3.04E–08
STARD3  − 1.26E–15 0.85 3.58E–19
UBE2C 3.24E–15 0.58 5.05E–07
UBE2V2 1.50E–17 0.59 2.79E–07
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LM statistics were consulted to release variances/
covariances constraints. Covariance between UBE2C and 
KIF2C (P = 0.0003, LM statistic: 13.00361) and variance of 
RECQL4 (P = 0.0007, LM statistic: 11.36518) and UBE2V2 
(P = 0.0058, LM statistic: 7.61829). Serial modifications and 
model fit indices showed much improvement toward equal 
covariance (data not shown).

We also trained the model from 144 breast cancers under-
going digital RNA counting. Supplementary Fig. 1 showed 
the conceptual structure of extended concurrent genes 
signature.

Survival analysis

Predictor (signature gene) weights and loadings are detailed 
in Supplementary Table 4. The threshold was set to the 75th 
percentile of the first X-score (1.9459). During the up to 
11.6 years of follow-up (median follow-up time: 5.5 year 
for low-risk group and 4.6 for high-risk group), there were 
11 events (local recurrence, distant metastasis, or breast 
cancer-specific death) in each group, resulting in relapse-
free survival rate of 89.8 and 69.4% for low- and high-risk 
group respectively (log-rank test: P = 0.004). For all-cause 
mortality, there were 17 and 13 fatal events for the low- 
and high-risk group, and the overall survival rate was 91 
and 23% respectively (log-rank test: P = 0.0294). Figures 1 
and 2 show relapse-free and overall survival of Taiwanese 
breast cancers stratified by the extended concurrent genes 
signature assayed by digital RNA counting (Supplementary 
Figs. 2 and 3 show the same plots stratified by the PAM50 

subtypes). Clustering heatmaps are displayed in Fig. 3 and 
Supplementary Fig. 4 (samples ordered by relapse-free sta-
tus). There was no interaction between predicted risk group 
and IHC subtype (Table 1). After multi-variate analysis 
adjusted for clinical hormone receptor and HER2 status, the 
predicted risk group remained significant with hazard ratios 
of 4.1 and 2.4 reported for relapse-free survival and overall 
survival (P < 0.01 and P = 0.02, respectively).

Discussion

In current study, the prognostic performance of the 
extended concurrent genes signature, initially developed 
from oligonucleotide microarrays, was ascertained from 
the NanoString nCounter-based digital RNA counting gene 
expression panel. The cross-platform comparability was evi-
denced from 64 Taiwanese breast cancers assayed for both 
platforms, and prognostic relevance was observed among 
144 patients showing distinct survival patterns stratified by 
the predicted risk groups.

Nowadays adjuvant therapies following curative surgery 
for early breast cancer are determined from predictive (some 
are also prognostic) factors such as IHC assays for ER, PR, 
HER2, Ki-67 as well as morphology of nuclear grade [24]. 
Despite enormous advancement in hormone manipulation, 
cytotoxic chemo-, and targeted therapy, there remains a sub-
stantial proportion of early breast cancers who still suffer 
from local recurrence, distant metastasis, or breast cancer 
associated death following curative surgery [25]. On the 

Fig. 1   Relapse-free survival 
between the high- (riskgp = 1) 
and low-risk (riskgp = 0) group 
defined by the extended concur-
rent genes signature (log-rank 
test: 0.004, riskgp: risk group)
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other hand, these conventional pathology-based factors fail 
to provide complete explanation for the observed prognos-
tic discrepancy within each subtype such as one-fourth of 
HER2 over-expressed breast cancers eventually develop 
resistance to trastuzumab, a humanized monoclonal anti-
HER2 antibody [26]. Therefore, accurate risk assessment 
becomes a must for effective surveillance for breast cancer 
survivors and risk management.

In the past decade, microarray analyses have redefined 
breast cancer as a union of distinct molecular subtypes and 
a couple of molecular taxonomies have been established, 
with most displaying prognostic and some with predictive 
power from retrospective cohort or randomized controlled 
trials [17, 27–31]. Most microarray-based or RT-PCR-
based multi-gene expression biomarkers published so far 
are restricted to ER-positive and limited nodal involvement 
(N0/1) subpopulation, which may limit clinical applicabil-
ity [32, 33].

Our published concurrent genes and the updated extended 
concurrent genes signatures are molecular biomarkers which 
capture the genetic aberrations inherited in breast cancer 
pathogenesis. Concurrent genes are those with coherent 
patterns between genomic and transcriptional alternations 
through integrating analyses [3, 7]. The discovery cohort 
included 31 CGH and 83 GE microarrays, of which 29 breast 
cancers were assayed for both platforms. In addition, targets 
were also determined by Genomic Identification of Signifi-
cant Targets in Cancer (GISTIC) from CGH microarrays 
[34]. A total of 1584 concurrent genes and genes with signif-
icant GISTIC scores were used to derive signatures, which 

were enriched concurrent gene sets across 83 GE arrays and 
one series with Han Chinese origin as well as three studies 
of Western origin [11–15]. Consensus from leading edge 
analysis was followed by supervised PLS regression predic-
tive model for relapse-free survival and prognostic discrep-
ancy was observed between predicted high-risk and low-risk 
group patients [7].

Regarding the published multi-gene signature for breast 
cancer prognosis, there are microarray-based such as the 
70-gene MammaPrint (Agendia, Morgan Irvine, CA), RT-
PCR-based 21-gene Oncotype DX (Genomic Health, Red-
wood City, CA) and 12-gene EndoPredict (Myriad Genet-
ics, Salt Lake City, UT), and NanoString nCounter-based 
50-gene Prosigna (Veracyte, South San Francisco, CA) 
[27–31, 35]. While most multi-gene signatures have used 
microarrays for candidate gene discovery during develop-
ment, the final version usually adopt more efficient RT-
PCR or digital RNA counting for gene expression measure. 
Therefore, cross-platform comparability should be critically 
evaluated to enhance prognostic validity.

Digital RNA counting was determined for the deploy-
ment of the extended concurrent genes signature as easily 
degraded nucleic acid from archived FFPE samples could 
be handled by the NanoString nCounter [18, 19]. Although 
nowadays it is not novel to perform gene expression profil-
ing from FFPE samples with the nCounter system, it was 
expected that nucleic acid degradation became a major issue 
in current study as RNA was extracted from breast cancers 
operated between 2010 and 2014. Consequently, it is neces-
sary to select a subset of study samples whose fresh frozen 

Fig. 2   Overall survival between 
the high- (riskgp = 1) and low-
risk (riskgp = 0) group defined 
by the extended concurrent 
genes signature (log-rank test: 
0.0294, riskgp: risk group)
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tissues had been assayed for gene expression with microar-
ray and to check whether the expression patterns of signa-
ture genes were similar between microarray and nCounter. 
Molecular barcodes provide a digital detection capable of 
highly multiplexed analyses. Fresh frozen tissues are needed 
for most microarray hybridization, while snapped-frozen 
samples are limited in real-world scenarios. Archived patho-
logical specimens provide a precious source to validate the 
residual risk prediction model for breast cancers managed 
with multi-modalities including surgery, chemo-, endocrine, 
and targeted therapy.

Initially mRNA measurement concordance between oli-
gonucleotide microarray and digital RNA counting was eval-
uated from 64 breast cancers assayed for both platforms and 
most (25 out of 32) signature genes showed a positive and 
significant correlation coefficient. When nCounter measured 
mRNA abundance was predicted from the one measured by 
microarray, most (26 out of 32) signature genes also showed 
a significant and positive regression coefficient. Since gene 

expression values were standardized within each platform 
before regression, all intercept estimates were nearly zero.

In addition to numeric correlation of each constitutional 
gene, we also took advantage of multi-group SEM to test 
equality of two covariance matrices. When a theoretical 
model, in our case the extended concurrent genes signature, 
was justified as a good approximation to the transcriptional 
profiles measured with a specific instrument such as the oli-
gonucleotide microarray, the next step was to ask whether 
the same construct held true across heterogeneous groups 
differed in assessing methods. It deserved notice that mean 
structure analysis was not deciphered as data were stand-
ardized (z-transformed) within each gene expression assay 
independently.

Although the significant P-value (P < 0.0001) rejected 
the null hypothesis of common covariance matrix among 
the two independent assays, the Chi-square test itself 
might not be meaningful here. This value was calculated 
from Chi-square value and model degrees of freedom, 

Fig. 3   Two-way hierarchical clustering heatmap of the extended con-
current genes and breast cancers. Average linkage and one-correlation 
matric were used for distance calculation. X-axis list breast cancer 

sample names and purple block indicated disease-free and brown 
block indicated relapse cases
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and the null hypothesis was that the predicted model fit-
ted the observed data well. However, Chi-square test is 
very sensitive to sample size and the larger the sample 
size, the greater the chance to get a significant Chi-square 
test. Some even recommend using the Chi-square divided 
by the degrees of freedom χ2/df less than 5 as a practi-
cal alternative index [36]. Our modest sample size of 144 
might render the Chi-square test for model fitness unreli-
able. On the other hand, 0.0811 of RMSEA indicated a 
slight deviation from good model fit, while LM statistics 
suggested releasing equal covariance constraint on covari-
ance of UBE2C and KIF2C as well as equal variance con-
straints on RECQL4 and UBE2V2 between microarray 
and digital RNA counting platform (all P-values < 0.01). 
Serial modifications with more general models might 
result in enhanced comparability and much equal covari-
ance matrices of these two gene expression assays. At the 
same time, distinct regression coefficients for each sig-
nature gene were also required for the novel digital RNA 
counting assay, as well as recalibrated threshold for the 
defined high-/low-risk group.

The extended concurrent genes signature, currently 
transformed and conducted on a NanoString nCounter gene 
expression panel, could facilitate our understanding of breast 
cancer residual risk after curative surgery as prognostic 
discrepancy was observed between the high- and low-risk 
groups. Optimized performance on FFPE samples further 
guaranteed wide clinical applicability. Digital detection of 
individual targets was achieved through unique molecular 
barcodes and reported probe counts representing precise 
and accurate gene expression measurements. The custom-
ized BCeC Sig CodeSet was trained from 144 Taiwanese 
breast cancers and prospective analysis of this retrospective 
cohort showed prognostic power independent of clinical 
subtypes such as ER and HER2 status. More efficient breast 
cancer prognostic prediction through digital RNA counting 
of signature genes selected form microarray experiments 
is evidenced. As these patients were treated following the 
contemporary guidelines with curative intention, the incre-
mental risk assessed may contribute substantially to the 
understanding of survival discrepancy observed within each 
clinical stratum.

There were some limitations of the study. First, both gene 
expression assays were not performed simultaneously. Oli-
gonucleotide microarrays were conducted in a prospective 
manner for fresh frozen samples, while nCounter assays 
were performed for retrospectively retrieved pathological 
archives. Second, the sample size of 144 breast cancers was 
only modest and prospective study to evaluate the prognostic 
power of the purposed signature is warranted in the future.

In conclusion, the proposed breast cancer residual risk 
model, composed of the extended concurrent genes sig-
nature, was believed to provide clinical applicability and 

substantial benefits for Taiwanese breast cancer patients in 
terms of personalized medicine.
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